NVIDIA®

TM

Π

PLIOPS EXTREME DATA PROCESSOR

> RESEARCH The Need for Speed: NVMe™, NVMe-oF™, and Data Processing Accelerators

6

Multi-Vendor Webinar Tuesday Feb 21, 2023

G 2 NA RESEARCH

Introduction and Ground Rules

Mike Heumann Managing Partner

Webinar Agenda

- **10:00-10:04** Ground Rules and Webinar Topic Introduction (G2M Research)
- **10:05-10:12** NVIDIA Presentation (Rob Davis, VP of Storage Technology)
- **10:13-10:20** NVMe Presentation (Peter Onufryk, Intel Fellow)
- **10:21-10:30** Pliops Presentation (Tony Afshary, VP of Marketing)
- **10:31-10:36** Panel Discussion Question #1
- **10:37-10:37** Audience Survey #1
- **10:38-10:43** Panel Discussion Question #2
- **10:44-10:44** Audience Survey #2
- **10:45-10:50** Panel Discussion Question #3
- **10:51-11:00** Audience Q&A (10 minutes)

The Need for Speed in Today's Workloads

We have very high-speed storage, networking, and in computing (multicore processors, GPUs, etc.). So why are so many companies focused on storage/networking/processing acceleration?

- Higher-level networking protocols and custom protocols for specific workloads require "offloads" to lower CPU utilization and increase application performance
- Advanced storage capabilities such as those offered by NVMe and NVMe-oF can also tax CPUs, reducing cycles available for workloads
- And then there is security, data resilience, and other very real needs that take CPU cycles away from workloads

(72

Acceleration Datapoints

- Annapurna Labs (now part of AWS) has built several accelerators, including Nitro, ENA, EFA, Neuron, Inferentia ML, and Trainium ML accelerators
- Microsoft Azure also has a long history of accelerating network stacks, neural networks, and storage
- SSD vendors have enabled features such as softwaredefined flash to accelerate storage workloads
- But where can non-hyperscalers go to accelerate their workloads in the same way hyperscalers do?

VP of Storage Technology www.NVIDIA.com

Peter Onufryk Intel Fellow https://nvmexpress.org/

Tony Afshary VP of Marketing www.pliops.com

EXTREME DATA PROCESSOR

G2M RESEARCH

Mike Heumann **Principal Analyst** www.g2minc.com

Rob Davis VP of Storage Technologies

www.NVIDIA.com

DPU - THE NEW BUILDING BLOCK IN A DATA CENTER

The Ultimate NVMe and Data Processing Accelerator

https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/

A DPU ACCELERATES DATA CENTER WORKLOADS

DPU Puts Data Center Infrastructure on a Chip

https://www.nvidia.com/en-us/networking/products/data-processing-unit/

A DPU ACCELERATES DATA CENTER WORKLOADS

DPU Puts Data Center Infrastructure on a Chip

NVIDIA BLUEFIELD-2 DPU

https://www.nvidia.com/en-us/networking/products/data-processing-unit/

THE BLUEFIELD DPU

22 Billion Transistors

16 Core A78 ARM processor

16 Core RISC-V processor

128b DDR-5 memory interfaces

4 up to 400Gb/s Ethernet or IB ports

32 port gen 5 PCIe switch

Multiple HW accelerators for Encryption, Decompression, Data Integrity and much more

BLUEFIELD NVME-OF TARGET ACCELERATOR

https://docs.nvidia.com/networking/display/MLNXENv451010/NVME-oF+-+NVM+Express+over+Fabrics

BLUEFIELD NVME-OF TARGET ACCELERATOR PERFORMANCE

- 6M IOPs, 512B block size
- 2M IOPs, 4K block side
- ~15 usec latency (not including SSD)

- 8M IOPs, 512B block size
- 5M IOPs, 4K block side
- ~5 usec latency (not including SSD)

https://docs.nvidia.com/networking/display/MLNXENv451010/NVME-oF+-+NVM+Express+over+Fabrics

BLUEFIELD NVME-OF TARGET ACCELERATOR PERFORMANCE

- 6M IOPs, 512B block size
- 2M IOPs, 4K block side
- ~15 usec latency (not including SSD)

- 8M IOPs, 512B block size
- 5M IOPs, 4K block side
- ~5 usec latency (not including SSD)

https://docs.nvidia.com/networking/display/MLNXENv451010/NVME-oF+-+NVM+Express+over+Fabrics

BLUEFIELD SNAP (NVME EMULATION) ACCELERATOR

NVMe-oF Initiator Acceleration

Physical Local NVMe Storage NVMe SNAP Drive Emulation Host Server Host Server OS/Hypervisor **OS/Hypervisor NVMe Standard Driver NVMe Standard Driver** PCle PCle **NVM** virtlO-blk virtlO-file BUS BUS NVMe Emulated Storage **NVMe SNAP Remote Storage Local Physical Storage to** BlueField DPU **Hardware Emulated Storage** https://nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-snapTM-

NVIDIA

technology-to-simplify-composable-storage

BLUEFIELD SNAP (NVME EMULATION) ACCELERATOR

NVMe-oF Initiator Acceleration

Physical Local NVMe Storage NVMe SNAP Drive Emulation Host Server Host Server OS/Hypervisor OS/Hypervisor **NVMe Standard Driver NVMe Standard Driver** PCle BUS NVMe Emulated Storage **NVMe SNAP Remote Storage Local Physical Storage to** BlueField DPU **Hardware Emulated Storage** https://nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-snapTM-

technology-to-simplify-composable-storage

BLUEFIELD DPU ENCRYPTION ACCELERATORS

Secure Data Path and Data at Rest

- At the Target JBOF
- Secure data at rest on drives with AES
- At the Front-End Controller
- Secure data on drives and in-flight to JBOFs and AFAs with AES, TLS, MACsec, and IPsec
- At the Initiator (Server)
- Secure data across entire storage data path
- Owner of the data controls the keys

Initiators

Storage Head

JBOF

Controller

https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/IPsec+Functionality

EXAMPLE OF BLUEFIELD DPU STORAGE ACCELERATORS

From 40GB/s to 64GB/s Performance at Half the Size and Half the Power

- x86 CPU based two Active/Active I/O Modules
- Power Consumption 1200W Avg/ 1500W Max
- 2U Rackmount, 85lb

- BlueField DPU based two Active/Active I/O Modules
- Power Consumption 500W Avg/ 1000W Max
- 1U Rackmount, 50lb

Server Power Use

IPsec offload

at 100% load

IPSec crypto

in software

IPSec crypto in DPU

3-year savings

for 10,000 hosts

Power Use

per server

728W

481W

(34% savings)

\$8.7M

(at \$0.15/kWh)

EXAMPLE OF DPU STORAGE SECURITY ACCELERATORS

Encrypting IPSec traffic at 100GbE line rate w BlueField

CONVERGED ACCELERATOR FOR STORAGE SOLUTIONS

Combined DPU and GPU together

https://www.nvidia.com/en-us/data-center/products/egx-converged-accelerator/

STORAGE IO CHALLENGES FOR GPU STORAGE

GPUDIRECT STORAGE (GDS)

BlueField RDMA Accelerators Enable Remote GDS

https://developer.nvidia.com/blog/gpudirect-storage/

GPUDIRECT STORAGE (GDS)

https://developer.nvidia.com/blog/gpudirect-storage/

IMPORTANCE OF LATENCY WHEN NETWORKING HIGH PERFORMANCE NVME BASED STORAGE

Network Switch Accelerators to Reduce Latency

https://www.nvidia.com/en-us/networking/ethernet-switching/

https://www.nvidia.com/en-us/networking/infiniband-switching/

IMPORTANCE OF LATENCY WHEN NETWORKING HIGH PERFORMANCE NVME BASED STORAGE

Network Switch Accelerators to Reduce Latency

https://www.nvidia.com/en-us/networking/ethernet-switching/

https://www.nvidia.com/en-us/networking/infiniband-switching/

http://nvme.org

NVMe® Technology Overview

Architected from the Ground Up for High Performance

- No practical limit on number of outstanding commands
 - Up to 64K-1 queues each with up to 64K-1 outstanding commands
- Supports many-core processors without locking
 - Each core my allocated its own queues and interrupts
- Efficient doorbell mechanism eliminates need for register reads in I/O path
- Fixed size 64B commands and 16B completions along with streamlined command sets enable fast and efficient command decode and execution
- Out of order command processing and data delivery

NVMe[®] 2.0 Family of Specifications

Why Refactor?

- Ease development of NVMe-based technology
- · Enable rapid innovation while minimizing impact to broadly deployed solutions
- Create extensible spec infrastructure that enables the next phase of growth for NVMe technology

 \mathbb{N}

 G_2

Cross Namespace Copy

- "Original" Copy Command
 - One or more source logical blocks ranges in a namespace to a single contiguous destination logical block range in the same destination namespace
- "Enhanced" Copy Command
 - One or more source logical blocks in one <u>or more namespaces</u> to a single consecutive destination logical block range in a <u>destination</u> namespace
- Copy command does not reformat data
 - · Logical block data and metadata format must be the same
 - · End-to-End Data Protection type and size must be the same
 - Logical Block Storage Tag Mask and Storage Tag Size must be the same

G2M

The Promise of Computational Storage G2M

- Higher performance and reduced latency due to multiple SSDs operating in parallel
- Reduced power due to less data movement
- Higher performance and reduced latency due to elimination of processor I/O and memory bottlenecks

Data Processing in NVMe SSDs (Computational Storage)

Computational Programs

- Standardized framework for computational storage
- New command set for operating on Compute Namespaces
 - Fixed function programs
 - Downloadable programs
- Memory Namespaces and Subsystem Local Memory command set
 - Required for computational programs but is new general NVMe architectural element
 - Mechanism to copy to and from any other type of NVM namespace to memory namespace

Example Operation:

- 1. Read data from NVM namespace into memory namespace
- 2. Execute program associated with computational namespace
- 3. Program reads data from memory namespace
- 4. Program stores result into memory namespace

Flexible Data Placement

- Enhancement to the NVM Command Set to enable host guided data placement
- Reclaim Unit (RU) is a unit of NVM storage that may be independently read, written, and erased
- A Reclaim Groups (RG) is an independent collection one or more RUs
 - Limited interference between RGs
 - Each RG has one or more Reclaim Unit Handles (RUH) that each point to an RU
- Data Placement Directive allows host to specify RG and RU of where to place written data

Tony Afshary VP of Marketing

www.pliops.com

Expanding Demands and Constraints

Current solutions don't adequately address

Supply constraints make it worse

Need to rethink data center architecture

The Data-Compute Bottleneck

35

Challenges With Broad SSD Adoption

Server Architectures Not Balanced

SSDs' 1000x increase in performance over HDD has not been matched by server advances

Amplified Data

Software that uses SSDs amplifies reads and writes up to 100x, stored data up to 6x, crushing storage and network efficiency

System Reliability Compromised

Traditional RAID is rarely used with NVMe SSDs due to the huge performance penalty, requires costly workarounds

Optimization Points and Tradeoff Relationships

Application IO Amplification Challenge

- Impacts Network, Storage, SSD, CPU Must Overprovision for This Extra Data Transfer and Processing
- Improving IO Amplification consumes CPU, cache or storage space.

XDP Architecture

XDP-*AccelKV*

World's 1st HW Key-Value Accelerator for Real Time Analytics and ML Training

XDP-AccelDB

Best-In-Class Universal Database & SDS Accelerator.

XDP-**RAID**plus

Best-In-Class Data Integrity and RAID+ Solution for NVMe and NVMeoF

Pliops XDP Data Services Platform

EME DATA PROCESSO

XDP-*RAIDplus*

Best-In-Class Data Integrity and RAID+ Solution for NVMe and NVMeoF

200GbE NVMe-oF disaggregated storage deployment w/ Pliops

XDP-AccelDB

Best-In-Class Universal Database & SDS Accelerator.

Pliops XDP-AccelDB Data Service is the Best-In-Class Database Accelerator for SQL applications such as MySQL, MariaDB & PostgreSQL. It is also able to accelerate NoSQL applications including MongoDB and Software Defined Storage solutions such as Ceph.

XDP-AccelKV

World's 1st HW Key-Value Accelerator for Real Time Analytics and ML Training

Pliops *XDP-AccelKV* Data Service is the Best-In-Class Key value accelerator solution for storage engines such as RocksDB, WiredTiger and other NoSQL storage engines. Being a native hardware key value accelerator, it can provide an order of magnitude higher performance than software-only solutions.

Pliops has introduced a RocksDB binary compatible library called XDP-Rocks which offloads the software functionality to hardware. It also has some key value enhancements such as key-value separation and LSM Bypass to achieve extreme performance acceleration and scalability

Panel Questions and Audience Surveys

Audience Survey Question #1

Are acceleration technologies something that your company is currently exploring (pick all that apply):

- We definitely see data processing acceleration, storage acceleration, and networking acceleration as being critical technologies:
- 46%

8%

- We would most likely take advantage of acceleration directly in our organic data centers:
- We are interested in utilizing cloud-based resources for acceleration: 15%
- We have teams actively exploring how acceleration can help us: 31%
- Sounds good, but not sure how it would apply to our workloads: 15%
- Don't know/no opinion: 23%

Panel Question #1

G2M RESEARCH

What are the greatest challenges that companies are likely to encounter when exploiting and deploying acceleration, and what are some tips/best practices that they can utilize to avoid these issues?

- Peter Onufryk NVMe
- Tony Afshary Pliops
- Rob Davis NVIDIA

Audience Survey Question #2

What types of workloads in your organization are candidates for acceleration (pick all that apply):

Artificial Intelligence and Machine Learning: 25%
Database Apps (SQL, NoSQL, unstructured search): 67%
Business Intelligence: 17%
Engineering and Scientific: 17%
Simulation: 0%
Other: 8%
No opinion/don't know: 17%

Do any of you see CXL (particularly memory pooling and memory sharing), or other similar "forward-looking" technologies as being important for storage, networking, or data processing acceleration, and how?

- Tony Afshary Pliops
- Rob Davis NVIDIA
- Peter Onufryk NVMe

Audience Osaa

Effective Marketing & Communications with Quantifiable Results