
KIOXIA WEKA NetApp

The Explosion in Imagery from Radiometry, Cryo-EM, and Other Imaging Technologies: Can Storage Keep Pace?

RESEARCH

6

Multi-Vendor Webinar Tuesday Nov 9, 2021

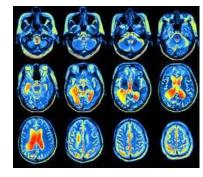
G2M Research Introduction and Ground Rules

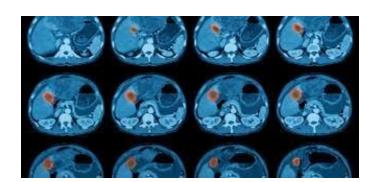
Mike Heumann Managing Partner, G2M Research

11/9/2021

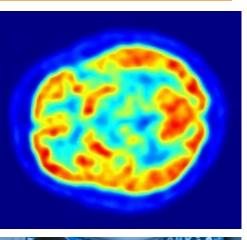
Copyright © 2021 G2M Research. All Rights Reserved.

Webinar Agenda

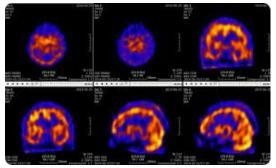


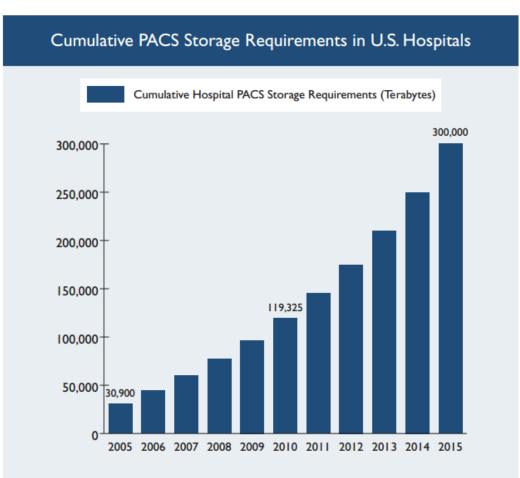

- **9:06-9:35** Sponsoring Vendor presentations on topic (10 minute each)
- **9:36-9:43** Panel Discussion Question #1
- **9:44-9:44** Audience Survey #1
- **9:45-9:52** Panel Discussion Question #2
- **9:53-9:53** Audience Survey #2
- **9:54-10:00** Panel Discussion Question #3
- **10:01-10:08** Audience Q&A (8 minutes)

10:09-10:10 Wrap-Up


The Explosion of Imaging Technologies G2

- The number of imaging technologies in the medical and bio/pharmaceutical world continues to grow in scope:
 - Cryo-Electron Microscopy
 - Computerized Axial Tomography (CAT)
 - Magnetic Resonance Imaging (MRI)
 - Positron Emission Tomography (PET)
 - Single-Photon Emission Computed Tomography (SPECT)
- The storage for these various imaging sources in AI/ML learning instances often take petabytes/tens of petabytes





Storage Architectures for Imaging

- As the size of storage pools for medical/bio/pharma imaging continue to grow, building responsive storage architectures becomes more critical
- Chief storage requirements include:
 - Performance (bandwidth, latency, latency consistency)
 - Multi-tiering (including on-premises and cloud storage pools)
 - Data management (what data is where?)

Source: Frost & Sullivan

ΚΙΟΧΙΑ

11 1111 1111 1111

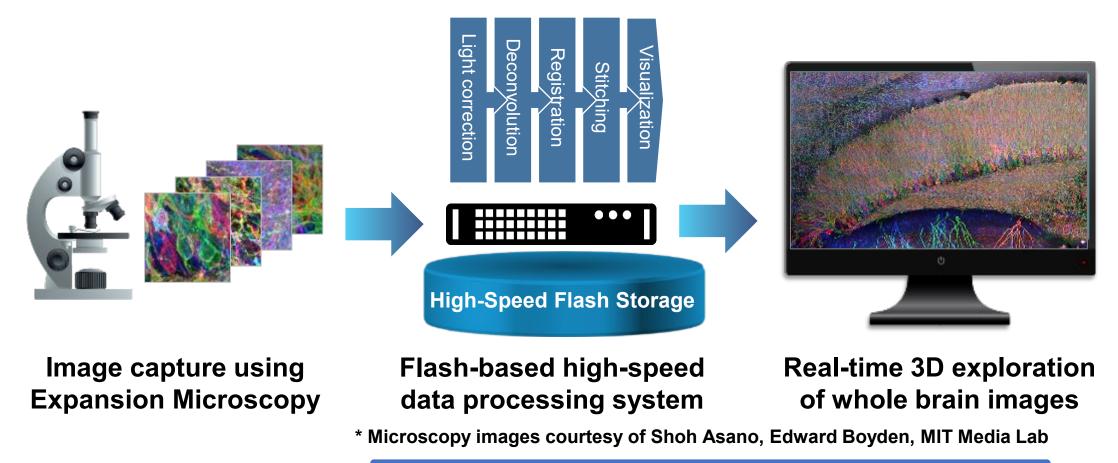
Matt Hallberg Sr Product Marketing Manager www.kioxia.com

Shimon Ben-David Field Chief Technical Officer www.weka.io

G2M

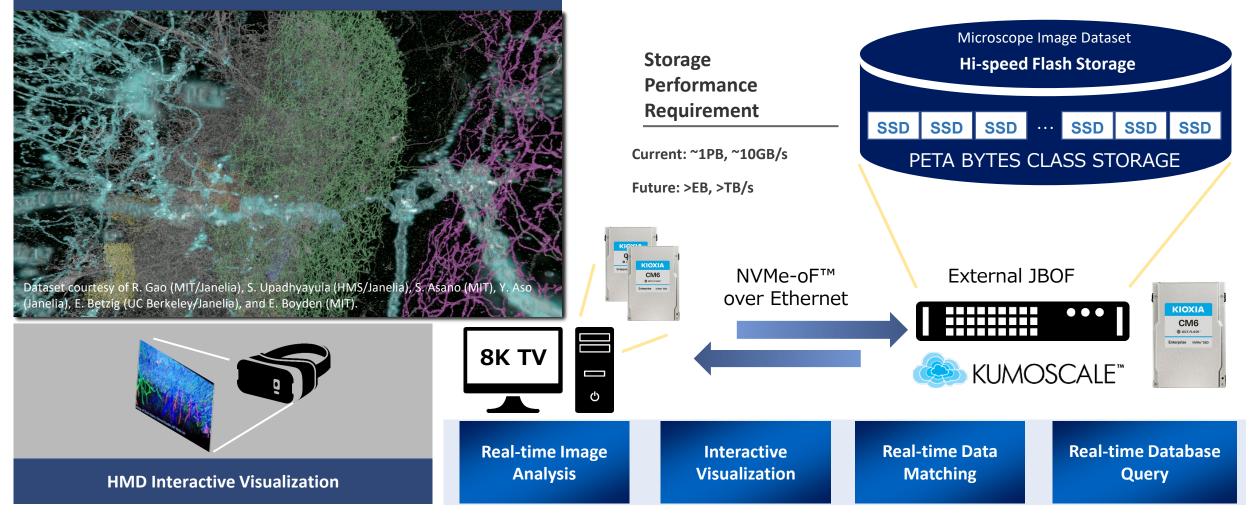
Esteban Rubens Principal, Healthcare AI Practice <u>www.netapp.com</u>

Mike Heumann Principal Analyst <u>www.g2minc.com</u> RESEARCH



Matt Hallberg Senior Product Marketing Manager www.kioxia.com

Storage Use Case: High Performance Nano-Scale Brain 3D Visualization


High performance SSDs enable interactive 3D and 8K visualization of brain images

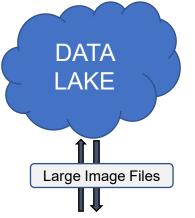
Additional Information: https://www.media.mit.edu/articles/mapping-the-brain-at-high-resolution/

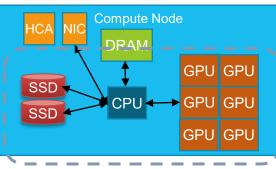
8K/3D High Capacity Interactive Visualization of Nano-scale Brain Neuron Demo

8K Interactive Visualization of Brain

KIOXIA

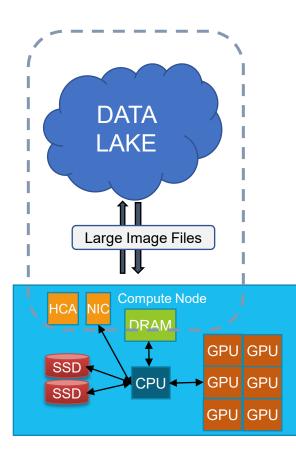
Interactive 3D Visualization of Terabyte-sized Nano-scale Brain Image in 8K Resolution


Overview	Why 8K?						
 • 8K (7,680 x 4,320 Pix) visualization that accelerates neuroscience research • High-capacity, high-performance SSDs (storage) enable processing of terabyte- class 3D microscope images • Through high resolution and hi-speed rendering, approximately 1 trillion voxels of 3D image datasets can be interactively visualized → Accelerates the research of nano scale and macro scale structures of neurons 	Accommodates to various spatial scales within the brain • Neurons link in milimeter scale: $(>10^3 \ \mu m)$ • Small processes are nano scale structure: $(<10-1\mu m)$ 8K (Super Hi-Vision) enable visualization in scales of 4-digit order • 8K $\rightleftharpoons 10^4$ Example: $7,680 \ pixels$						
	Rendering						
Dataset courtesy of R. Gao (MIT/Janelia), S. Upadhyayula (HMS/Janelia), S. Asano (MIT), Y. Aso (Janelia), E. Betzig (UC Berkeley/Janelia), and E. Boyden (MIT).	Dataset courtesy of S. Asano (MIT) and E. Boyden (MIT).						


ΚΙΟΧΙΑ

Y. Bando, K. Hiwada, M. Kanaya, T. Ito, S. Asano, M. Bove, and E. Boyden. Interactive 3D Visualization of Terabyte-sized Nanoscale Brain Images at 8K Resolution, Neuroscience 2017 Abstract 531.11, 2017.

Why Local Storage Matters



- The training phase of machine learning is the most-resource intensive set of operations
 - Datasets are growing at a fast pace, MRIs can reach up to TBs, and training sets can be composed of thousands of images
 - Whether you are running on RAM or on local storage, the local storage needs to be able to handle reads and writes in blazing fashion and with little impact to overall latency
 - Moving the data in, moving the data out, and checkpointing all need to be completed quickly to minimize the idleness of the GPUs
 - PCIe[®] 4.0 SSDs' noticeable benefits with file copying and other I/O tasks versus
 PCIe 3.0 SSDs
 - For sequential workloads
 - Up to 7000MB/s on reads
 - Up to 4200MB/s on writes
 - For random workloads
 - 1M+ IOPS on random reads
 - 70K+ on random writes
 - PCIe 4.0 SSDs are also able to take advantage of 3D flash's higher densities, allowing for up to 30TB in a 2.5" SSD

Why Remote Storage Matters

- Networking speeds, technologies, and topologies have greatly advanced over the past few years
 - 200GbE NICs
 - RoCEv2 / RMDA over Ethernet
 - NVMe[®] over Fabrics (NVMe-oF[™]) deployments
 - Etc.
- Data sets are comprised of thousands of files all of which need to be sent and received to and from the compute node to minimize downtime
- The storage behind the NIC(s) should be optimized for sequential performance to send data for processing and receive processed data. The faster the offload can occur, the faster the local storage can send the data to the GPUs
 - NVMe-oF deployments show their strength here by improving performance and reducing latency
 - Using NVMe SSDs for staging "warm" data vs cold data (cheaper storage) optimizes the spend on remote storage
 - GPUDirect[®] technology can also take advantage of the remote NVMe SSDs

QCT / AMD / Broadcom / KIOXIA PCIe[®] 4.0 SSD Demo @ Microsoft Ignite 2019

23.4 GiB/s

Benchmark: Storage I/O for Virtualized App

• 100% sequential 129KiB reads

PCle 4.0

- More than double the performance over PCIe 3.0 configuration
- Each drive delivers over 7 GiB/s!

Microsoft Windows Server 2019, Azure Stack HCI 2 node cluster

- Build 177763.775 Data Center Edition
- Hyper-V and Storage Spaces Direct
- Two-way mirror volumes
- VM Fleet with diskspd 2.0.21a
- FIO

QCT D43K-1U Server(2)

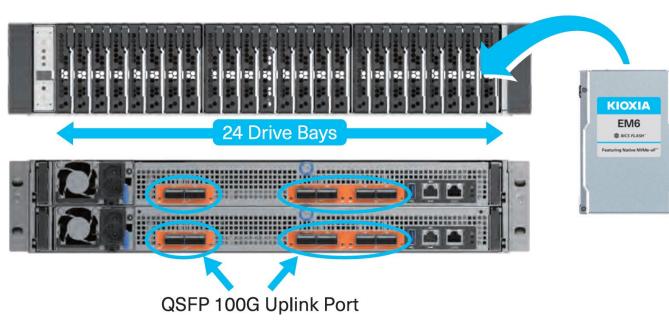
- 2 x AMD Epyc 7742
- 512GiB DRAM
- 4x KIOXIA CM5 PCIe 3.0, 7.68T SSD
- 4x KIOXIA CM6 PCIe 4.0, 7.68T SSD
- Broadcom NetXtreme[™]-P2100G 200Gbps NIC

PCIe is a registered trademark of PCI-SIG. Microsoft Ignite, Azure, and Hyper-V are registered trademarks of Microsoft Corporation. NetXtreme is a trademark of Broadcom Corporation. All other company names, product names and service names may be trademarks of their respective companies.

KIOXIA CM6

@ SICS FLASH

There's more to come: Ethernet Bunch of Flash (EBOF) over NVMe-oF™



Construction

- (6) x 200 Gbps high speed network connectivity
- (24) bays @ 830K / drive, 20M IOPs per fully loaded system

Application

- Data Centers
 - Just add EBOF(s) to existing RoCEv2
- High Performance Computing
 - Burst buffer storage
 - DRAM offload to storage for IO phase after computation
 - Lustre[®]
- GPU Direct for AI/ML
 - GPU Direct bypasses CPU/DRAM by writing directly through local storage or via NIC / remote node
- Expansion Storage shelf
 - NVMe-oF via RDMA over Converged Ethernet (RoCEv2) is increasing in popularity as an alternative to Infiniband with minimal performance tradeoffs

KIOXIA CM6 Series Enterprise NVMe[®] SSDs

- Enterprise PCIe[®] 4.0, NVMe 1.4 SSDs
- Form factors: 2.5-inch, 15mm Z-height
- Proprietary KIOXIA architecture: controller, firmware and BiCS FLASH[™] 96-layer 3D TLC memory
- Dual-port design for high availability applications
- 6th generation flash die failure recovery
- High performance with lower power consumption
- Power loss protection (PLP) and end-to-end data protection
- Suited for 24x7 enterprise workloads
- Data security options: SIE, SED, FIPS 140-2 Certified
- Six power mode settings
- Available now

				CM6 (Mixed-Use)					CM6 (Read-Intensive)					
Endurance		DWPD	3					1						
User Capacity*		GB	800	1600	3200	6400	12800	960	1920	3840	7680	15360	30720	
Sequential Read	128KB(QD32)	MB/s	6900	6900	6900	6900	6900	6900	6900	6900	6900	6900	6850	
Sequential Write	128KB(QD32)	MB/s	1400	2800	4200	4000	4000	1400	2800	4200	4000	4000	4000	
Random Read	4KB(QD256)	KIOPS	800	1300	1400	1400	1400	800	1200	1400	1300	1400	900	
Random Write	4KB(QD32)	KIOPS	100	215	350	325	330	50	100	170	170	170	70	

* Definition of capacity - KIOXIA Corporation defines a kilobyte (KB) as 1,000 bytes, a megabyte (MB) as 1,000,000 bytes, a gigabyte (GB) as 1,000,000.000 bytes and a terabyte (TB) as 1,000,000.000 bytes. A computer operating system, however, reports storage capacity using powers of 2 for the definition of 16bit = 230 bits = 1,073,741,824 bits, 16B = 230 bytes = 1,073,741,824 bytes and 1TB = 240 bytes = 1,099,511,627,776 bytes and therefore shows less storage capacity. Available storage capacity (including examples of various media files) will vary based on file size, formatting, settings, software and operating system, and/or pre-installed software applications, or media content. Actual formatted capacity vary.

Note: Specifications are subject to change

(72

PCIe is a registered trademark of PCI-SIG. NVMe is a registered trademark of NVM Express, Inc.

© 2021 KIOXIA Corporation. All Rights Reserved.

• Single-port design, optimized for data center class workloads CD6 6th generation flash die failure recovery BiCS FLASH Designed for high density storage deployments Data Center NVMe[™]SSD Power loss protection (PLP) and end-to-end data correction

- Five power mode settings
- Available Now

				CD6 (Mixed-Use)						CD6 (Read-Intensive)					
Endurance		DWPD	3					1							
User Capacity*		GB	800	1600	3200	6400	12800	960	1920	3840	7680	15360			
Sequential Read	128KB(QD32)	MB/s	5800	5800	6200	6200	5500	5800	5800	6200	6200	5500			
Sequential Write	128KB(QD32)	MB/s	1300	1150	2350	4000	4000	1300	1150	2350	4000	4000			
Random Read	4KB(QD256)	KIOPS	700	700	1000	1000	750	700	700	1000	1000	750			
Random Write	4KB(QD32)	KIOPS	90	85	160	250	110	30	30	60	85	30			
* Definition of capacity - KIOXIA Corporation defines a kilobyte (KB) as 1,000 bytes, a megabyte (MB) as 1,000,000 bytes, a gigabyte (GB) as 1,000,000 bytes and a terabyte (TB) as 1,000,000 bytes. A computer operating system, however, reports storage capacity															

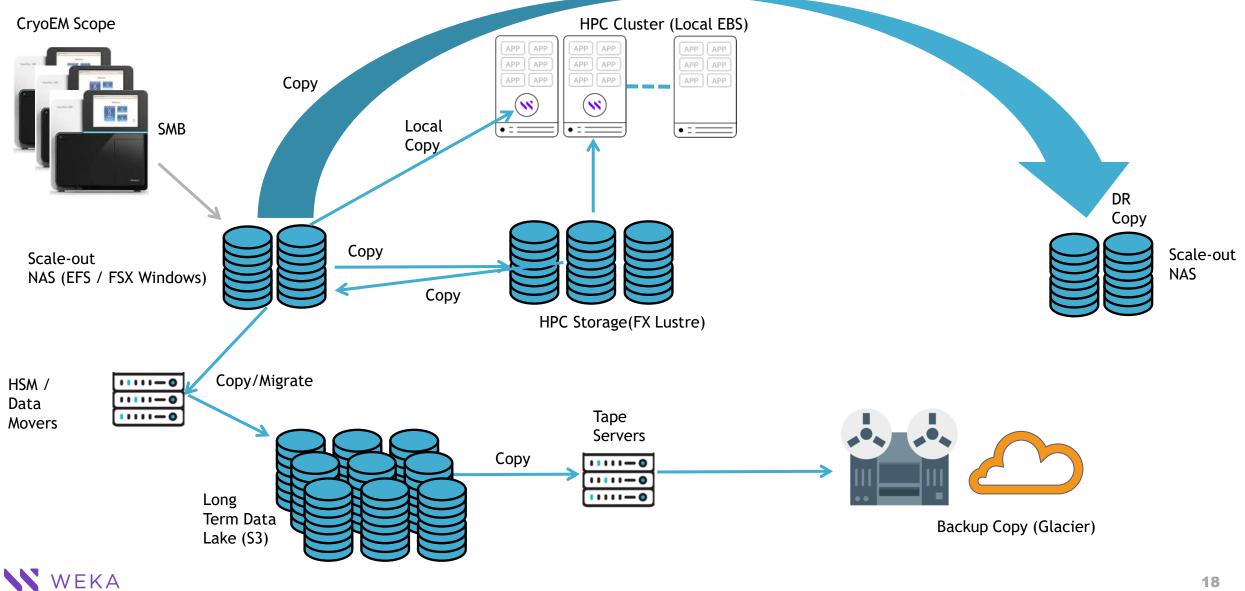
* Definition of capacity - KIOXIA Corporation defines a kilobyte (KB) as 1,000 bytes, a megabyte (MB) as 1,000,000 bytes, a gigabyte (GB) as 1,000,000 bytes and a terabyte (TB) as 1,000,000,000 bytes. A computer operating system, however, reports storage capacity using powers of 2 for the definition of 1Gbit = 230 bits = 1.073,741,824 bits, 1GB = 230 bytes = 1.073,741,824 bytes and 1TB = 240 bytes = 1.099,511,627,776 bytes and therefore shows less storage capacity. Available storage capacity (including examples of various media files) will vary based on file size, formatting, settings, software and operating system, and/or pre-installed software applications, or media content. Actual formatted capacity may vary.

KIOXIA

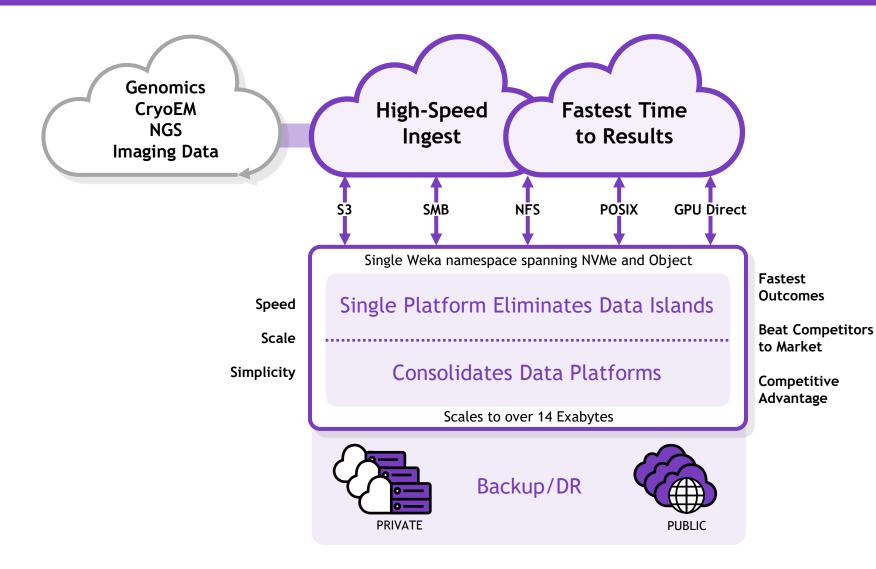
KIOXIA CD6 Series Data Center NVMe[®] SSDs

- Data Center PCIe[®] 4.0, NVMe 1.4 SSDs
- Form factors: 2.5-inch, 15mm Z-height
- Proprietary KIOXIA architecture: controller, firmware and BiCS FLASH[™] 96-layer 3D TLC memory

- Data security options: SIE, SED, FIPS 140-2 Certified



17


WEKA

1111 1111 1111

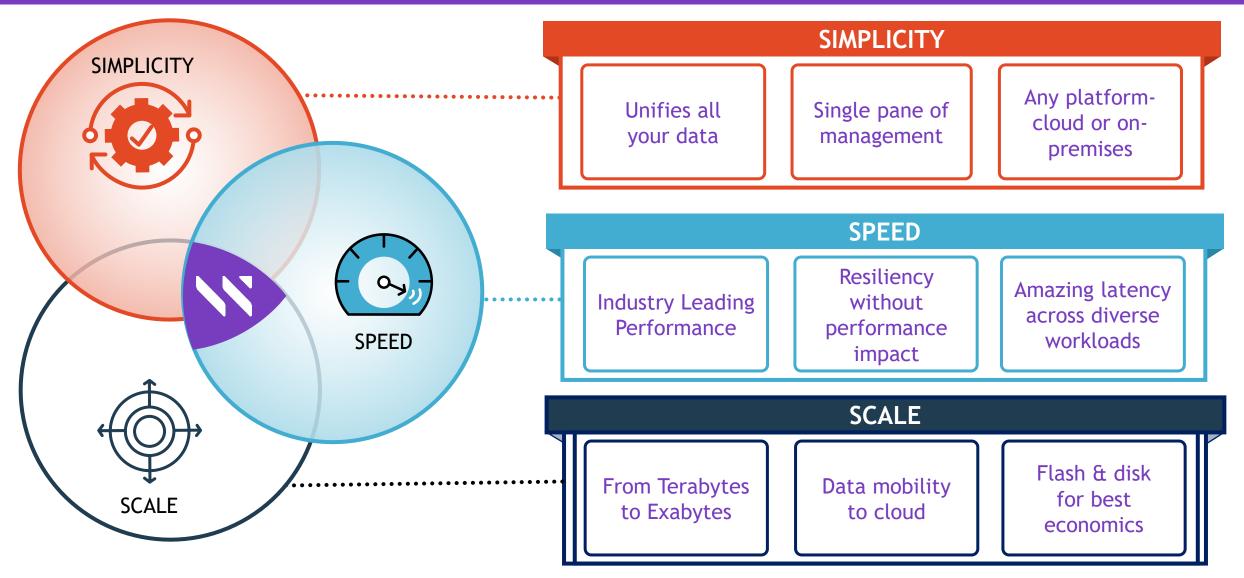
Genomics Environment with Legacy Solutions

Solution: Zero-Copy Architecture

After Weka

Set It & Forget It

Simply write data to Weka and we transparently place data to the appropriate location


Limitless Platform - Any Application

Accelerate applications which encompasses small file, large file, and meta data intensive workflows

Flexible Storage Consumption Any way you want.

WEKA

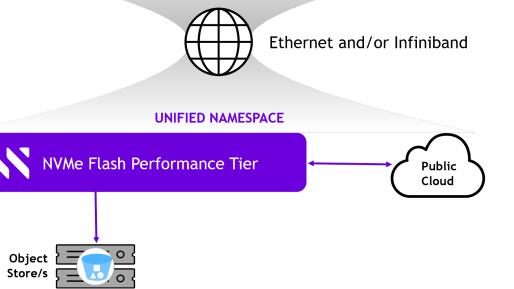
Weka Data Platform

WEKA

Weka Data Platform

Eliminate Data Silos

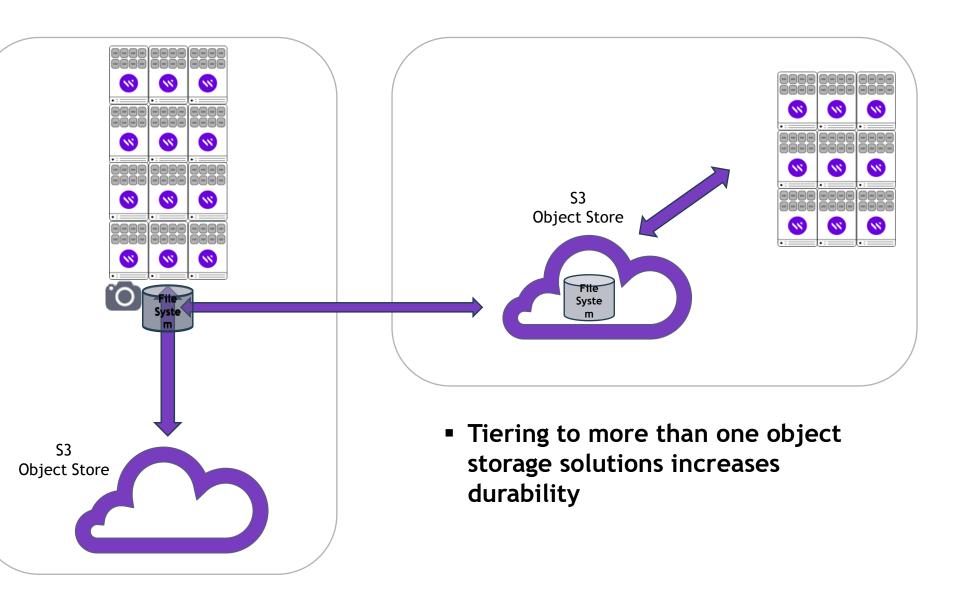
Multi-protocol ready


- SMB
- NFS
- S3/Object
- GPUDirect Storage
- CSI

Diverse workloads

- File and Object
- Small and Large file workloads
- IOPS/Throughput/Latency/Metadata v

WekaFS on Industry Standard Servers



Cloud Ready - Data Mobility - Business Continuity

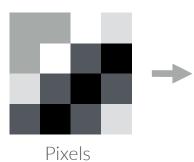
- Transparent backup, archive, data migration
- Snap-to-object allows burst to cloud
- Disaster recovery and business continuity baked into solution

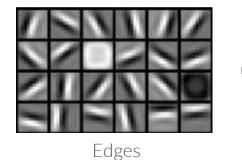
Atomwise Case Study

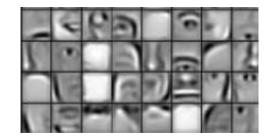
Life Science and AI in AWS

Atomwise

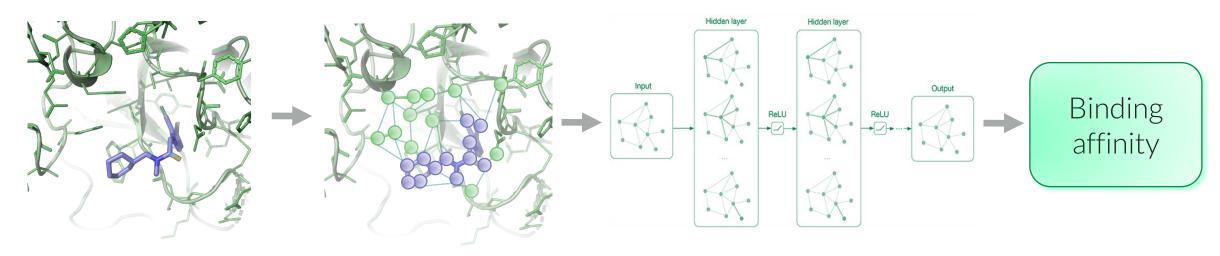
WEKA


- Problem
 - Needed to serve 200 million small 10KB-sized files to GPU nodes
 - GPU servers were starved of I/O causing massive budget overruns
 - Multiple copies of data to mange on EBS to improve performance
 - Had to be cloud native in AWS
- What They Tried
 - Used EBS to run the workloads direct to each GPU node
 - Ended up with multiple copies of the same data set on EBS which proved prohibitively expensive


nsp15


(SARS-CoV-2019 endoribonuclease)

Convolutional neural networks for image recognition



Eyes, Noses, Mouths

Faces

Convolutional neural networks for molecular recognition

>4,000 PROTEIN TARGETS

>15,000,000 EXPERIMENTAL MEASUREMENTS

Parting remarks

- It was quick to set up a server and sync our S3 data to it
- IO performance is phenomenal for shared file access
- We saw model training times drop by up to 2x
- Incorporating WekaIO changed our solution space
 - Some experiments went from requiring **3 months to 1 week**
- It's an ideal match for distributed deep learning with large file inputs
- The team has been extremely supportive

Thank You!

• Weka + AWS + Atomwise Webinar On-demand

https://www.weka.io/resources/accelerating-ai-training-models/

• Weka + AWS + Atomwise Case Study

https://www.weka.io/wp-content/uploads/files/2021/10/2021-Atomwise-Weka-AWS-Partner-Case_Study_WekaIO_FINAL.pdf

 Weka Named a Visionary in Magic Quadrant[™] for Distributed File Systems and Object Storage

https://www.weka.io/2021-gartner-mq-distributed-file-systems-block-storage/

• Contact Us

https://www.weka.io/contact-us/

NetApp

Esteban Rubens Principal, Healthcare Al Practice www.netapp.com

Enterprise Imaging storage

• Data creation

- Traditional areas
 - Radiology
 - Cardiology
- Other specialties
 - All the other "ologies"
 - Visible-light imaging
- Data consumption
 - Screening
 - Diagnostic
 - "AI"
 - Clinical trials
- Data access
 - File vs object

G

Digital pathology examples

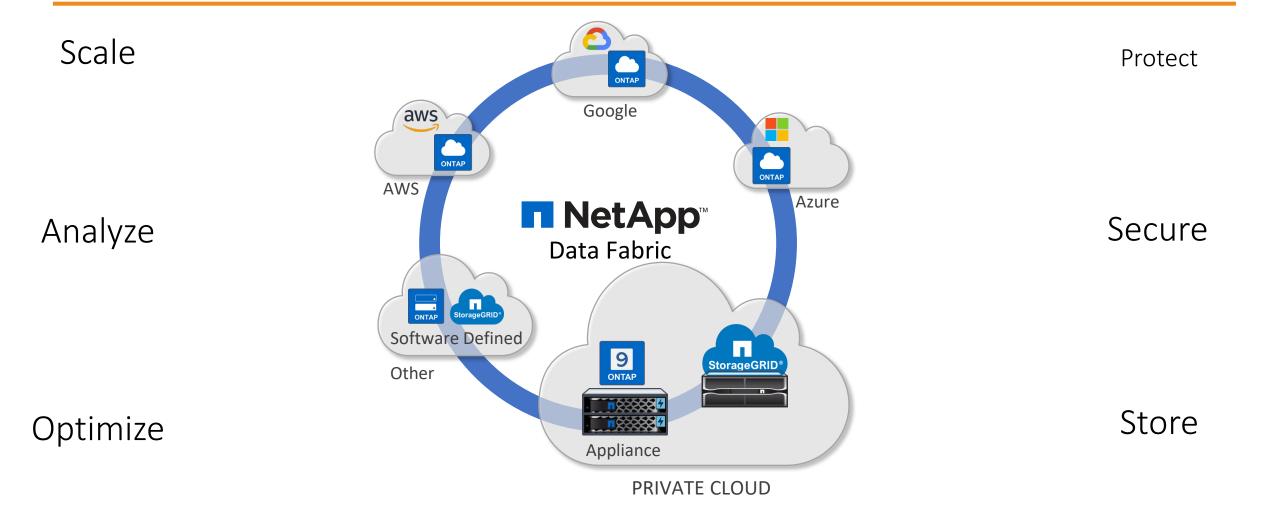
- Most scanners support resolutions of 0.5 μm/pixel (effective viewing magnification: 20X) or 0.25 μm/pixel (effective viewing magnification: 40X)
 - Following image compression at the scanner, each image file produced is over 1 GB in size
- Academic medical center
 - Annual Volume 137k cases
 - 87k anatomic pathology, 30k cytology, 20k hematopathology
 - 7-10 slides/case @ 1.3 GB/slide
 - 1.2-1.7 PB/year storage required in a single institution
- Hospital with 880 beds
 - 500 TB/year for digital pathology

Al in Enterprise Imaging

- Computer-Aided Detection (CADe)
- Computer-Aided Diagnosis (CADx)
- Case prioritization
 - Worklist management
 - Triage
- Automated segmentation
 - Automated labeling
- Automated measurements
 - Pre-populate structured reports
- Automated reading of normal cases
- Automated patient positioning

The NetApp Data Fabric

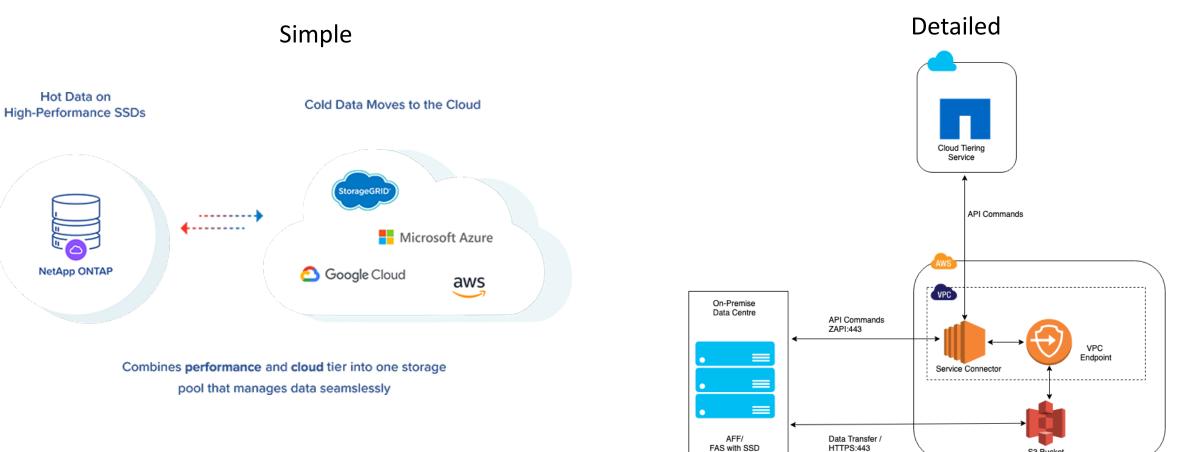
NetApp Data Fabric


Have the right data in the right place, at the right time, at the right price, with the right access characteristics.

Seamlessly move data

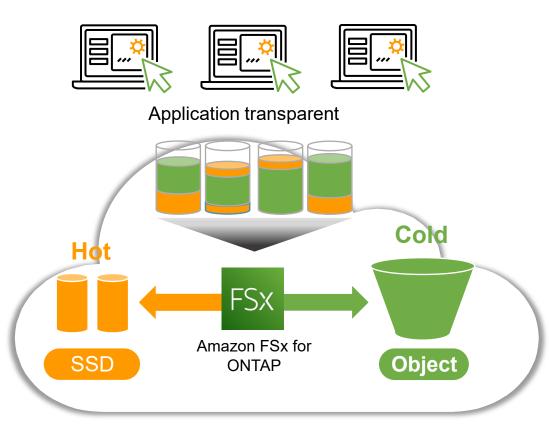
- To and from any clouds
- Between different clouds
- Between ONTAP systems (edge, core, and cloud)
- ONTAP on AFF for high-performance model training paired with an S3 data lake

The NetApp Data Fabric


NetApp Cloud Tiering

NetApp Cloud Tiering

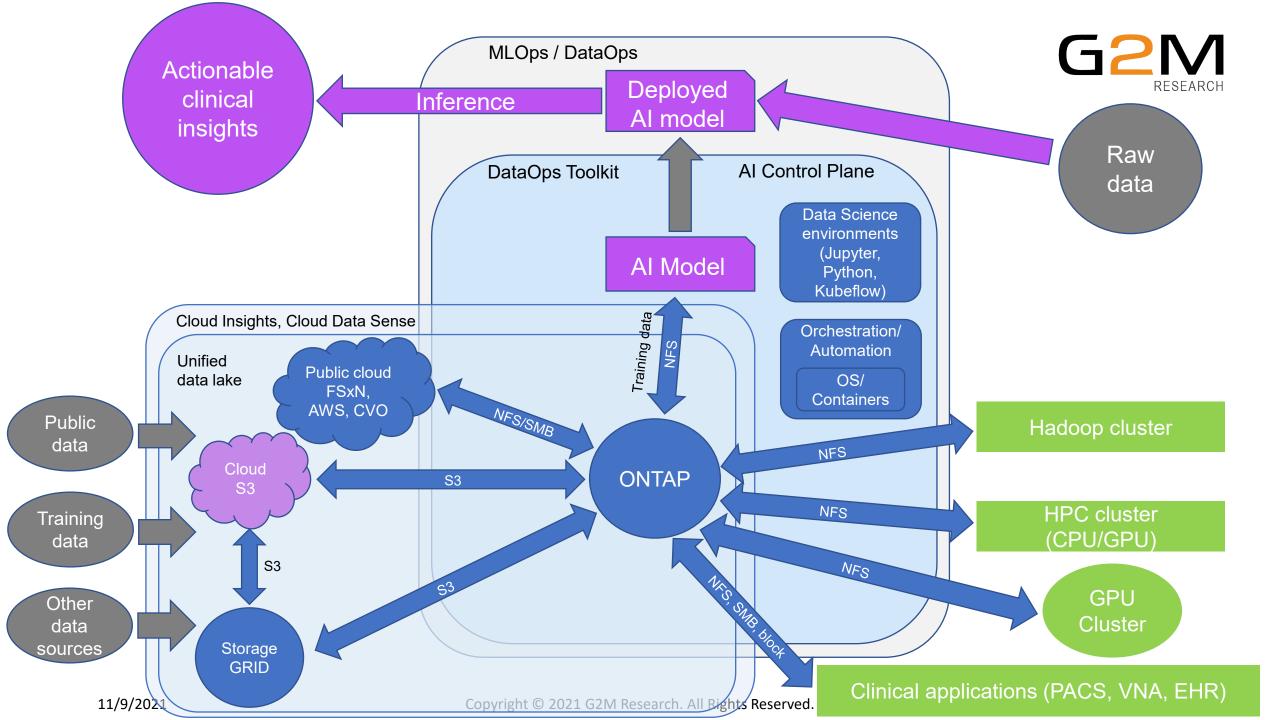
- Tiering infrequently-used data automatically and seamlessly
- From on-prem ONTAP SSD or CVO to low-cost public cloud object storage automatically
- Create custom tiering policies and we take care of the rest
- No impact to the application layer
- Available via Cloud Manager


NetApp Cloud Tiering

S3 Bucket

AWS FSx for NetApp ONTAP

Bi-directional block-level data movement


G2M

RESEARCH

Life sciences example

- Visible-light imaging of cell assays
- 10⁸ to 10⁹ images/year
- Image normalization & feature extraction in the cloud
- AI model training on-premises
 - NETAPP AI (NVIDIA DGX + NetApp AFF)
 - StorageGRID

Panel Questions and Audience Surveys

Panel Question #1

G2M RESEARCH

The number of imaging technologies continues to explode, providing a great number of new sources for medical/bio imaging. Do these different technologies present the same or different issues for storage?

- Shimon Ben-David Weka
- Matt Hallberg Kioxia
- Esteban Rubens NetApp

Audience Survey Question #1

How large are the imagery training data sets that you and/or your customers typically field (pick one answer):

 Greater than 5 PB: 	10%
 Between 1PB and 5PB: 	25%
 Between 250TB and 1PB: 	35%
 Between 50TB and 250TB: 	15%
Less than 50TB:	5%
 Don't know 	10%

Panel Question #2

Are there specific areas where NVMe[®] and/or NVMe-oF[™] provide unique benefits to large imagery storage solutions?

- Matt Hallberg Kioxia
- Esteban Rubens NetApp
- Shimon Ben-David Weka

Audience Survey Question #2

When looking at storage solutions for medical/bio imagery, what are the critical factors that drive your technology and architecture choices (check all that apply):

 Performance (bandwidth and latency): 	30%
 Performance consistency (especially latency consistency): 	30%
 Storage networking performance: 	20%
Storage costs:	10%
 Ease of deployment/"turnkey" solutions 	15%
 Don't know/no opinion: 	30%

Obviously, artificial intelligence and machine learning are being utilized to analyze all the images from these various sources. How can storage architectures be optimized to speed up the training/learning process for imagery?

- Esteban Rubens NetApp
- Shimon Ben-David Weka
- Matt Hallberg Kioxia

Audience ogaa

Effective Marketing & Communications with Quantifiable Results